Cover_Art

53. Shivangi Gupta, Parveen Rawal,  Puneet Gupta* (2024)       

Orbital-Driven Insights into Enantioselective Hydrofunctionalization of Alkenes Catalyzed by Co-Salen Complexes: Study on Singlet and Triplet States

ChemPlusChem 2024 , 4(9), 3679–3689. Doi: 10.1002/cplu.202400393


52. Nikunj Kumar, Puneet Gupta* (2024)       

Every reaction Detail Matters: An in silico driven Step-by-Step Guide to understand the B2O3-Catalyzed CO2 to cyclic carbonates conversion

J. Catal. 2024 , 439, 115787. Doi: 10.1016/j.jcat.2024.115787 


51. Suman Maji, Parveen Rawal, Animesh Ghosh, Karishma Pidiyar, Shaeel A. Al-Thabaiti, Puneet Gupta*, Debabrata Maiti* (2024)       

Metal-free Borylation of α-Naphthamides and Phenylacetic Acid Drug 

JACS Au 2024 , 4(9), 3679–3689. Doi: 10.1021/jacsau.4c00660


50. Kumar N., Gupta P.* (2024)       

DFT Struggles to Predict the Energy Landscape for Iron Pyridine diimine-Catalyzed [2+2]-Cycloaddition of Alkenes: Insights into the Problem and Alternative Solutions

J. Phys. Chem. A 2024, 128(20), 4114–4127. Doi: 10.1021/acs.jpca.3c08325  

(Accepted as the Front Cover Article)

Download Cover: https://pubs.acs.org/cms/10.1021/jpcafh.2024.128.issue-20/asset/jpcafh.2024.128.issue-20.xlargecover.jpg

49. Rawal P., Gupta P.* (2024)       

Unidentical Twins: Geometrically Similar but Chemically Distinct Metal-free Sites in Boron Oxide for Methane Oxidation to HCHO, CO and CO2

Chem. Eur. J. 2024, 30(38), e202401050. Doi: 10.1002/chem.202401050

Accepted as the Inside Cover Article 

Download Cover: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202402229

48. Arora S., Gupta P.* (2024)       

Modelling on a Biomimetic [Cu−O−Cu]2+-mediated Methane-to-Methanol Conversion Unveils the Site for Methane Activation

Chem. Asian J. 2024, 19(14), e202400282 . Doi: 10.1002/asia.202400282

(Accepted as the Front Cover Article)

Download Cover: https://aces.onlinelibrary.wiley.com/doi/10.1002/asia.202481401

47. Goswami, N. Kumar, N. Gupta, P.*, Maiti, D.* (2024)     

Surpassing the Limited Coordination Affinity of Native Amides by Introducing Pyridone-Pd-AgOAc Cluster to Promote Distal γ-C(sp3)-H Arylation

ACS Catal. 2024, 14(6), 3798–3811. Doi: 10.1021/acscatal.3c06007 

46. Bhattacharya T., Teja C., Kumar N., Bhagat K. K., Lahiri G. K.*, Gupta P.*, Tyagi S.*, Maiti D.* (2024)     

Harnessing the “Methyl Effect” in the Development of Novel Meta-directing Template for C–H Cyanation 

ACS Catal. 2024, 14(4), 2216−2228. Doi: 10.1021/acscatal.3c04953

43. Kautu A., Sharma S., Singh R., Negi S. N., Singh N., Swain N., Kumar V., Kumar N., Gupta P.*, Bhatia D.*, and Joshi K. B.* (2024)              

Self-Assembled Bioinspired Short Metallopeptide Nanostructures for Plausible Biomedical Applications

Nanoscale 2024, 16(31), 14940-14952. Doi: 10.1039/D4NR02236J

42. Sharma S., Kautu A., Kumar N., Swain N., Kumar V., Singh R., Kesharwani K., Singh N., Gupta P.*  and Joshi K. B.* (2024)         

Metallopeptide Nanoreservoirs for Concurrent Imaging and Detoxification of Lead (Pb) from human Retinal Pigment Epithelial (hRPE1) Cells

ChemNanoMat 2024, 10(1002), e202400098. Doi: 10.1002/cnma.202400098 

41. Sharma S., Kautu A., Singh N., Kumar N., Kumar V., Singh R., Kesharwani K., Swain N., Gupta P., Joshi K. B.*(2024)       

Metallopeptide-inspired pyridine-bis-tyrosine peptide conjugate mediated facile room temperature synthesis of ultrafine solid mercury nanoparticles for plausible applications

Next Materials 2024, 4 ,100118. 100118. Doi: 10.1016/j.nxmate.2024.100118

40. Arora S., Gupta P.* (2023)      (Under ACES - Wiley Talents)           

Counter-Anions Rendered Weak-Interactions Perturb the Stability of Tyrosinase-Mimicked Peroxo-Dicopper(II) Active Site: Unraveling Computational Indicators

Chem. Asian J. 2023, 18(20), e202300688. Doi: 10.1002/asia.202300688 

39. Rawal P., Gupta P.* (2023)                 

Orbitals-driven Insights on the Reactivity of Boron Oxide with Dioxygen for Methane Oxidation on Singlet and Triplet Spin States

ChemCatChem. 2023, 15(13), e202300364. Doi: org/10.1002/cctc.202300364

38. Sharma A., Thomas A., Gupta P.* (2023)                 

Two Layers of Computational Screening on Silaborane-based Clusters Filter Ca(SiB11H11CH3)2 as the Promising Electrolyte for Calcium-ion Batteries

Batteries & Supercaps 2023, 6(8), e20230007. Doi: 10.1002/batt.202300073

37. Thomas A., Khan T. S., Gupta P.* (2023)                 

Density functional theory based indicators to predict corrosion inhibition potential of ceramic oxides in harsh corrosive media

Phys. Chem. Chem. Phys. 2023, 25(3), 25372545. Doi: 10.1039/D2CP05474D   

36. Goswami, N.; Kumar, N.; Bag, S.; Gupta, P.*; Maiti, D.* (2023)                 

Deciphering the Mechanistic Insights of Temporary Directing Group Assisted meta-Alkenylation of Complex Biaryl Systems 

ACS Catal. 2023, 13(16), 11091–11103. Doi: 10.1021/acscatal.3c02383

Equal First Authors

35. Chandra, D.; Kumar, N.; Sumit, Gupta, P.*; Sharma, U.* (2023) 

Chemo Selective C-H Alkylation of Isoquinolones with Maleimides:  A Combined Experimental and Computational Case Study. 

 Molecular Catalysis 2023, 551, 113597. Doi:10.1016/j.mcat.2023.113597                 

  † Equal First Authors

34. Gupta S. S., Gupta S., Manisha, Gupta P.* and Sharma U.* (2023)        (Chosen as HOT article)         

Experimental and Computational Studies on Ru(II)-Catalyzed C7-Allylation of Indolines with Allyl Bromide

Chem. Eur. J. 2023, 29(50), e202301360. Doi: 10.1002/chem.202301360

Equal First Authors

33. Binnani, C.; Arora, S.; Priya, B; Gupta, P.*; Singh S. K.* (2023)    

2-Hydroxypyridine-based Ligands as Promoter in Ruthenium(II) Catalyzed C-H Bond Activation/Arylation Reactions

Chem. Asian J. 2023, 18(22), e202300569 Doi: 10.1002/asia.202300569

32. Gupta P.*, Mukherjee R. N.* (2023)                 

Book: Copper Bioinorganic Chemistry from Health to Bioinspired Catalysis

Book Chapter: Modeling Tyrosinase Activity Using m-Xylyl-Based Ligands: Ring Hydroxylation, Reactivity, and Theoretical Investigation

World Scientific Publishing Company, 81(112), Doi: https://doi.org/10.1142/9789811269493_0003


31. Singh O., Singh A., Maji. A., Chauhan R., Gupta P., Ghosh K. (2023)                 

Crystal structure of phenoxyl radical complex relevant to metal-site of galactose oxidase enzyme: A facile one-pot synthesis, evidence for hydrogen atom transfer and DNA cleavage via self-activation

 Dalton Trans. 2023, 53(3), 986-995. Doi: 10.1039/D3DT03282E

30. Maurya M. R., Singh D., Bisth. R., Avecilla F., Sharma A., Gupta P. (2023)                 

Catalytic Potential of Pyrazolone Based Dioxidomolybdenum(VI) Complexes for Multicomponent Biginelli reaction, Epoxidation of Olefins and Oxidative Bromination of Phenol Derivatives

 Eur. J. Inorg. Chem. 2023, 26(28), e202300302. Doi: 10.1002/ejic.202300302

29. Maurya M. R., Singh D., Avecilla F., Sharma A., Gupta P. (2023)                 

Trinuclear dioxidomolybdenum(VI) complexes derived from benzene-1,3,5-tricarbohydrazide and study of the catalytic activity

New J. Chem. 2023, 47(13), 6114–6134. Doi: 10.1039/d2nj05936c

25. Bhattacharjee J., Rawal P., Das S., Harinath A., Gupta P.* and Panda T. K.* (2022) 

Highly efficient Ti-catalyst for deoxygenative reduction of esters at ambient conditions: experimental and mechanistic insights from DFT Study, 

Dalton Trans. 2022, 51(15), 5859-5867. Doi:10.1039/D2DT00076H

Equal First Authors

23. Maurya M. R., Singh D., Tomar R., & Gupta P. (2022) 

Trinuclear cis–[MoVIO2] complexes catalyzed efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-one based biomolecules via one-pot-three-components Biginelli reaction under solvent-free condition. 

Inorganica Chimica Acta 2022, 532, 120750. Doi:10.1016/j.ica.2021.120750.

22. Kumar R., Rawal P., Banerjee I., Nayek H. P., Gupta P.*, & Panda T. K.* (2022) 

Catalytic Hydroboration and Reductive Amination of Carbonyl Compounds by HBpin using a Zinc Promoter. 

Chem - Asian J. 2022,17(5), e202200013. Doi:10.1002/asia.202200013

Equal First Authors

21. Mahato S., Rawal P., Devadkar A. K., Joshi M., Biswas B., Gupta P.*, & Panda T. K.* (2022) 

Hydroboration and reductive amination of ketones and aldehydes with HBpin by a bench stable Pd (II)-catalyst. 

Org. Biomol. Chem. 2022, 20(5), 1103-1111. Doi:10.1039/d1ob02339j

Equal First Authors

20. Narvariya R., Gupta S., Jain A., Rawal P., Gupta P.*, & Panda T. K.* (2022) 

One‐Pot Reductive Amination of Aromatic Aldehydes in [Et3NH][HSO4] using Sodium Borohydride and A Mechanistic Investigation using Computational Method. 

ChemistrySelect. 2022, 7(4), e202200052. Doi:10.1002/slct.202200052

Equal First Authors

19. Maurya M. R., Maurya, S. K., Kumar N., & Gupta P. (2021) 

Biomimetic Oxidative Bromination by cis‐Dioxidotungsten (VI) Complexes of Salan Type N, N’‐Capped Linear Tetradentate Amino Bisphenol. 

Eur. J. Inorg. Chem. 2021, 2021(27), 2724-2738. Doi:10.1002/ejic.202100357

18. Chandra D., Kumar N., Parmar D., Gupta P.*, & Sharma U.* (2021) 

Co (iii)-catalysed regioselective linear C (8)–H olefination of isoquinolone with terminal aromatic and aliphatic alkynes. 

Chem. Commun. 2021, 57(88), 11613-11616. Doi:10.1039/ d1cc04541e (Chosen as Cover Article)

Equal First Authors

17. Balyan S., Saini S., Khan T. S., Pant K. K., Gupta P.*, Bhattacharya S.*, and Haider M. A.* (2021) 

Unravelling the reactivity of metastable molybdenum carbide nanoclusters in the C–H bond activation of methane, ethane and ethylene.

Nanoscale 2021, 13(8), 4451-4466. Doi:10.1039/d0nr07044k (Chosen as Cover Article)

16. Das S., Rawal P., Bhattacharjee J., Devadkar A., Pal K., Gupta P.*, and Panda T. K.* (2021) 

Indium promoted C(sp3)–P bond formation by the Domino A3-coupling method – a combined experimental and computational study. 

Inorg. Chem. Front. 2021, 2021(8), 1142-1153. Doi:10.1039/d0qi01210f (Chosen as Cover Article)

Equal First Authors

15. Maurya M. R., Tomar R., Gupta P., and Avecilla F. (2020) 

Trinuclear cis-dioxidomolybdenum(VI) complexes of compartmental C3 symmetric ligands: Synthesis, characterization, DFT study and catalytic application for hydropyridines (Hps) via the Hantzsch reaction.

 Polyhedron 2020, 186, 114617. Doi:10.1016/j.poly.2020.114617

14. Singh R., Mishra N. K., Gupta P., and Joshi K. B. (2020) 

Self-assembly of a sequence-shuffled short peptide amphiphile triggered by metal ions into terraced nanodome-like structures. 

Chem. Asian J. 2020, 15(4), 531-539. Doi:10.1002/asia.201901715

13. Saha A., Rajput A., Gupta P., and Mukherjee R. (2020) 

Probing the electronic structure of [Ru(L1)2]Z (z = 0, 1+ and 2+) (H2L1: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels. 

Dalton Transaction 2020, 49(43), 15355-15375. Doi:10.1039/d0dt03074k

12. Singh R., Mishra N. K., Singh N., Rawal P., Gupta P., and Joshi K. B. (2020) 

Transition metal ions induced secondary structural transformation in a hydrophobized short peptide amphiphile. 

New Journal of Chemistry 2020, 44(22), 9255-9263. Doi:10.1039/d0nj01501f

11. Chan S.-C, Ang Z. Z., Gupta P., Ganguly R., Li Y., Ye S., and England J. (2020)

Carbodicarbene ligand redox noninnocence in highly oxidized chromium and cobalt complexes. 

Inorganic Chemistry 2020, 59(6), 4118-4128. Doi:10.1021/acs.inorgchem.0c00153

10. Balyan S., Gupta P., Khan T. S., Pant K. K., and Haider M. A. (2020) 

Active sites in Mo/HZSM-5 catalysts for nonoxidative methane dehydroaromatization. In J. Hu & D. Shekhawat (Eds.), 

Direct Natural Gas Conversion to Value-Added Chemicals (Ist ed., pp. 255-274). Boca Raton, USA: CRC Press, Taylor & Francis Group. Doi: 10.1201/9780429022852

9. Chan S.-C.*, Gupta P.*, Engelmann X., Ang Z. Z., Ganguly R., Bill E., Ray K., Ye S., and England J. (2018) 

Observation of carbodicarbene ligand redox noninnocence in highly oxidized iron complexes. 

Angew. Chem.  In. Ed. 2018, 57(48), 15717-15722. Doi:10.1002/anie.201809158

8. Guthertz A., Leutzsch M., Wolf L. M., Gupta P., Rummelt S. M., Goddard R., Farès C., Thiel W., and Fürstner A. (2018) 

Half-Sandwich ruthenium carbene complexes link trans-Hydrogenation and gem-Hydrogenation of internal alkynes. 

J.  Am. Chem. Soc. 2018, 140(8), 3156-3169. Doi:10.1021/jacs.8b00665


7. Rummelt S. M.; Cheng G.-J.; Gupta P.; Thiel W.; Fürstner A. (2017) 

Hydroxy-Directed Ruthenium-Catalyzed Alkene/Alkyne Coupling: Increased Scope, Stereochemical Implications, and Mechanistic Rationale

Angew. Chem Int. Ed.  2017, 56(13), 5652.  Doi: 10.1002/anie.201700342 

6. Gupta P., Diefenbach M., Holthausen M. C., and Förster M. (2017) 

Copper-mediated selective hydroxylation of a non-activated C−H bond in steroids: A DFT study of Schönecker's reaction. 

Chem.  European J. 2017, 23(6), 1427-1435. Doi:10.1002/chem.201604829 (Chosen as HOT Article)


5. Becker J., Gupta P., Angersbach F., Tuczek F., Näther C., Holthausen M. C., and Schindler S. (2015)

Selective aromatic hydroxylation with dioxygen and simple copper imine complexes. 

Chem. European J. 2015, 21(33), 11735-11744. Doi:10.1002/chem.201501003 (Chosen as Cover and VIP Article)

4. Leutzsch M., Wolf L.M., Gupta P., Fuchs M., Thiel W., Farès C., and Fürstner A. (2015)

Inside Cover: Formation of ruthenium carbenes by gem‐hydrogen transfer to internal alkynes: Implications for alkyne trans‐hydrogenation. 

Angew. Chem. Int. Ed. 2015, 54(42), 12180-12180. Doi:10.1002/anie.201508274

3. Leutzsch M., Wolf L. M., Gupta P., Fuchs M., Thiel W., Farès C., and Fürstner A. (2015)

 

Formation of ruthenium carbenes by gem-hydrogen transfer to internal alkynes: Implications for alkyne trans-hydrogenation. 

Angew. Chem. Int. Ed. 2015, 54(42), 12431-12436.  DOI:10.1002/anie.201506075 (Chosen as Cover and VIP Article)

2. Breunig J. M., Gupta P., Das A., Tussupbayev S., Diefenbach M., Bolte M., Wagner M., Holthausen M. C., and Lerner H.-W. (2014) 

Efficient access to substituted silafluorenes by nickel-catalyzed reactions of biphenylenes with Et2SiH2. 

Chem. Asian J. 2014, 9(11), 3163-3173. Doi:10.1002/asia.201402599

1. Nozinovic S., Gupta P., Fürtig B., Richter C., Tüllmann S., Duchardt-Ferner E., Holthausen M. C., and Schwalbe H. (2011)

Determination of the conformation of the 2’OH Group in RNA by NMR spectroscopy and DFT calculations. 

Angew. Chem. Int. Ed. 2011, 50(23), 5397-5400. Doi:10.1002/anie.201007844